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Abstract—Fusarium langsethiae has been isolated from 

infected oats, wheat and barley, mainly, in Central and 

Northern Europe. This species has been implicated in the 

production of high levels of T-2 and HT-2 toxins in cereals, 

especially in oats. Cereals and their by-products are basic 

foods in human and animal diet. They are a primary source 

of components that are beneficial to human and animal 

health. There are limited data available regarding the host 

sensitivity and effect of environmental variables such as 

relative humidity and temperature on the biosynthesis of T-

2 and HT-2 by this species. The aim of this work was to 

know the effect of cereal type and environmental conditions 

on production of T-2 and HT-2 by different isolates of F. 

langsethiae isolated from cereals in order to determine the 

effect of host and physical, chemical or biological variables, 

associated to cereal technology, in the accumulation of T-2 

and HT-2 in the grain. Toxins were analyzed by an 

optimized HPLC method. In general, the highest T-2 and 

HT-2 levels were found in oat grains, followed by barley, 

wheat, corn, sorghum, rye and rice grains incubated at 25 

ºC and 0.98 aw. At 20ºC and 0.95 aw toxin levels were very 

low in all the assayed cereals. ANOVA showed that T-2 and 

HT-2 production by F. langsethiae were significantly 

affected (P > 0.001) by temperature, aw and type of cereal. 
 

Index Terms—cereals, T-2 and HT-2 toxins, temperature, 

relative humidity, Fusarium langsethiae 

 

I. INTRODUCTION 

Cereals and their by-products are basic foods of human 

and animal diet. They have high beta-glucan content, 

good taste, dietetic properties, and anticarcinogenic 

effects. Beta-glucan is known as a prebiotic, stimulating 

the growth of some beneficial residential colon 

microorganisms such as bifidobacteria [1]. Fusarium 

species occur widely in nature as saprophytes and plant 

parasites. All cereals are prone to Fusarium spp. infection 

in pre-and post-harvest and this infection, in general, 

                                                           
 Manuscript received May  8,  2017; revised  September 25, 2017.  

reduces grain yield and/or contaminates the grain with a 

range of toxic metabolites detrimental to human and 

animal health. 

Trichothecene mycotoxins produced by Fusarium 

species have been subdivided into type-A trichothecenes, 

which include T-2 toxin (T-2), HT-2 toxin (HT-2) and 

diacetoxyscirpenol (DAS), and type-B trichothecenes, 

such as deoxynivalenol (DON) and nivalenol (NIV). This 

categorisation is based upon the absence (type-A) or 

presence (type-B) of a keto group at C-8 of the 

trichothecene skeleton. 

Fusarium langsethiae has been isolated from infected 

oats, wheat and barley in Central and Northern Europe 

[2], [3]. This toxigenic species is difficult to be detected 

because, generally, it does not produce visible symptoms 

on the seeds. F. langsethiae is closely related to Fusarium 

sporotrichioides, F. poae and Fusarium sibiricum [4] and 

has been involved in the production of high levels of T-2 

and HT-2 in cereals, especially in oats in countries of 

Central and Northern Europe [5]-[11]. In cereals T-2 is 

readily metabolized to HT-2, which is a deacetylated 

form of T-2, but both toxins induce adverse effects with 

similar potency [12], [13]. T-2 and HT-2 show 

immunosuppressive and cytotoxic effects both in vivo and 

in vitro and induces DNA fragmentation characteristic of 

apoptosis [14], [15]. 

Distribution of T-2 and HT-2 appears to be largely 

restricted to Europe and in the last years highest levels of 

T-2 and HT-2 have been detected in cereals in Nordic 

countries and the UK, although this may, in part, be due 

to the lack of analysis in other regions of the world. HT-2 

and T-2 are currently being considered for legislation in 

the EC. A previous recommendation (2013/165/EU) has 

been published in the Official Journal of the European 

Union. The aim of this Recommendation is to collect 

information that will ultimately support the assessment of 

trends in levels and exposure to T-2 and HT-2, and that 

may contribute to the understanding of the factors 

affecting levels. The wide range and frequent presence of 
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these toxins found in cereals reveal an increasing need for 

research on these factors. Among the cereal species, T-2 

and HT-2 usually present higher incidence levels and 

concentrations in oats (Avena sativa) [6]. Fusarium 

sporotrichioides has been reported to be the major 

producer of T-2 and HT-2 in cereal grains in the South of 

Europe, although F. langsethiae has been detected in 

barley in Northern Spain [16]. 

There are limited data available regarding the host 

sensitivity and effect of environmental variables linked to 

weather and agro-climatic regions, such as humidity and 

temperature, on the biosynthesis of T-2 and HT-2 by F. 

langsethiae. The aim of this work was to know the effect 

of cereal species and environmental conditions on 

production of T-2 and HT-2 by different isolates of F. 

langsethiae isolated from cereals in order to determine 

the effect of host and variables associated to cereal 

technology in the accumulation of T-2 and HT-2 in the 

grain. The obtained results can be very useful to predict 

risk of toxin presence in cereals in pre- and post-harvest 

and to apply prevention and control measurements. 

II. MATERIALS AND METHODS 

A. Fungal Strains and Growth Conditions 

Three strains of F. langsethiae, Fl22, Fl05 and Fl26 

isolated from barley, were used. These strains are held in 

the Mycology and Mycotoxins Group Culture Collection 

(Valencia University, Spain). Strains were preserved in 

15% glycerol at -20ºC. Before carrying out the study on 

the influence of cereal type and environmental factors on 

mycotoxin accumulation, the strains were grown on YES 

medium. The culture medium was autoclaved for 30 min 

at 115ºC. The medium was poured into 9-cm diameter 

Petri dishes. The three strains of F. langsethiae were 

inoculated and incubated for 7 days at 25ºC. These fresh 

cultures were used to prepare inocula for further 

experiments on toxin production in cereal grains. 

B. Effect of Cereal Type and Environmental Conditions 

on T-2 and HT-2 Production 

Oat, barley, wheat, corn, sorghum, rye and rice grains 

(15g), previously analysed to ensure they had 

undetectable levels of T-2 and HT-2, were placed in 

Erlenmeyer flasks and autoclaved for 20 min at 121 ºC. 

Then, water activity (aw) was adjusted to 0.95 and 0.98 by 

addition of sterile distilled water using a moisture 

adsorption curve for each cereal (aw-values were checked 

with a Novasina RTD 502 equipment (Novasina GmbH, 

Pfäffikon, Switzerland). The hydrated cereal seeds were 

placed in sterile 9-cm Petri dishes to form a layer of 

grains. All treatments were inoculated centrally with a 3-

mm diameter agar disk taken from the margin of a 7-day-

old growing colony. Inoculated Petri plates of the same 

aw were enclosed in sealed plastic containers together 

with beakers of a glycerol-water solution matching the 

same aw as the treatments to maintain a constant 

equilibrium relative humidity inside the boxes. The 

experiments were carried out in triplicate. Cultures were 

incubated at 20ºC and 25ºC for 15 days. 

C. Chemical Analysis 

Preparation of standard solutions: Standards of T-2 

and HT-2 were supplied by Sigma (Sigma-Aldrich, 

Alcobendas, Spain). Each standard of T-2 and HT-2 was 

dissolved in acetonitrile at a concentration of 1.0 mg/mL 

and stored at -20ºC in a sealed vial until use. Working 

standards were prepared by appropriate dilution of known 

values of the stock solution with acetonitrile and used to 

obtain the calibration curves. 

Extraction and clean-up of T-2 and HT-2 from oat 

grains: To determine toxin levels in the cultures, all the 

cereal culture distributed as a homogenous layer into the 

Petri dish was used, regardless of the colony diameter 

reached after 14 incubation days. Grains were milled and 

homogenized. Two g of each milled cereal grain were 

placed into a 50-mL screw-capped tube for trichothecene 

extraction. Fifteen mL of solvent mixture (acetonitrile-

water, 84:16, v/v) was added and the tube was shaken in 

an orbital shaker (Infors-HT Aerotron, Bottminghen, 

Switzerland) for 90 min. The extract was filtered through 

Whatman No. 4 filter paper. The filtrate was kept at -20 

ºC until used. Solid-phase extraction cartridges 

containing alumina, charcoal and C18 were prepared 

following the methodology described by Valle-Algarra et 

al. [17]. Three mL of filtrate sample extract was passed 

through the cartridge using a manifold and collected into 

a vial. The cartridge was washed with 2 mL of the same 

extraction solvent. The eluate was collected in the same 

vial and the extract was dried at 45ºC under a gentle 

stream of nitrogen. The dried extract was redissolved in 

250 µL of Milli-Q pure water with help of a vortex mixer. 

In the case of heavily contaminated cultures further 

dilution (up to 1:15 v/v) was accomplished. Fifty µL of 

the final extract was injected into the chromatographic 

system. 

Chromatographic analysis: The LC system consisted 

of a Waters 600E system controller, a Waters 717 Plus 

autosampler and a Waters 996 UV diode array detector 

(DAD) (Waters, Milford, MA, USA). T-2 and HT-2 were 

separated using a C18 Zorbax Eclipse Plus (150 x 4.6 mm, 

3.5 µm) (Agilent Technologies, Waldbronn, Germany), 

with a guard column of the same material. Analysis was 

performed in the gradient mode using water (A) and 

acetonitrile (B) solvents. Gradient conditions were 

initiated by holding the mobile phase composition for 3 

min with 30% B. After that, it was linearly changed to 55% 

B during 18 min. The composition was then changed to 

99% B in 1 min and maintained for 5 min as a cleaning 

step to improve results. After cleaning, the eluent 

composition was returned to the initial 30% B. The flow-

rate of the mobile phase was 1 mL/min [18]. 
Validation of the analytical method: The analytical 

method used for T-2 and HT-2 was assessed for 

selectivity, linearity, and precision according to Mateo et 

al. [18]. Selectivity was checked by injecting three times 

50µL of T-2 and HT-2 standard solutions before injecting 

extracted samples and comparing the peak retention times 

and the UV spectra of the substances that produce these 

peaks. Linearity was assessed by performing triplicate 

injections of standard solutions whose concentrations 
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were in the 0.5-10 mg/L range for both mycotoxins. 

Standard curves were generated by linear regression of 

peak areas against concentrations. Precision and recovery 

were established by determination of T-2 and HT-2 in 

each grain, covering the range of the method. Limit of 

detections (LOD) were considered as the T-2 and HT-2 

concentrations that provide a signal equal to b + 3sb, 

where b is the intercept of the respective calibration 

curves and sb is the standard error of the estimate 

assuming to be the blank. The limit of quantification 

(LOQ) was considered equal to 3 x LOD [19]. 

Statistical analysis: The data were treated by 

multifactor ANOVA and Duncan’s test of multiple 

comparisons using Statgraphics Centurion XV.2.11 

software (Statpoint Inc., VA, USA). A 95% confidence 

level was used to assess influence of individual and 

interacting treatments. 

III. RESULTS AND DISCUSSION 

T-2 and HT-2 toxins were determined in cereal grain 

cultures of the three F. langsethiae strains under all the 

assayed conditions. Fig. 1, Fig. 2, Fig. 3 and Fig. 4 show 

the effect of temperature, aw, and class of cereal on T-2 

and HT-2 production. 

 

Figure 1. T-2 and HT-2 toxin production by three isolates of F. 
langsethiae (Fl22, Fl05 and Fl26) in cereal grains at 0.95 aw and 20 ºC. 

Toxin levels are averages of three assays. 

 

Figure 2. T-2 and HT-2 toxin production by three isolates of F. 
langsethiae (Fl22, Fl05 and Fl26) in cereal grains at 0.98 aw and 20 ºC. 

Toxin levels are averages of three assays. 

 

Figure 3. T-2 and HT-2 toxin production by three isolates of F. 
langsethiae (Fl22, Fl05 and Fl26) in cereal grains at 0.95 aw and 25 ºC. 

Toxin levels are averages of three assays. 

 

Figure 4. T-2 and HT-2 toxin production by three isolates of F. 
langsethiae (Fl22, Fl05 and Fl26) in cereal grains at 0.98 aw and 25 ºC. 

Toxin levels are averages of three assays. 

In general, concentrations of HT-2 were higher than 

those of T-2, regardless of environmental conditions and 

type of cereal. HT-2 concentration was always higher at 

25ºC than at 20ºC and higher at 0.98 aw than at 0.95 aw 

and in the order oats > barley > wheat > corn > sorghum > 

rice. ANOVA showed that T-2 and HT-2 levels were 

significantly affected (P > 0.001) by temperature, aw and 

cereal type. The highest HT-2 level (74.6 mg/kg) and T-2 

level (28.9 mg/kg) were detected in oat seeds colonized 

by isolate Fl22 at 25ºC and 0.98 aw. 
The isolate Fl22 was the largest producer of T-2 and 

HT-2 in all the assayed cereals. The concentrations of T-2 

in oat, barley, wheat, corn, sorghum and rice seed 

cultures of isolate Fl22 were 28.9, 26.4, 24.9, 22.4, 18.3 

and 17.3 mg/kg, respectively, whereas the levels of HT-2 

were 74.6, 63.2, 56.6, 49.3, 42.5, and 32.5 mg/kg, 

respectively. 

The lowest levels of T-2 were registered in the cultures 

at 0.95 aw and 20ºC of the isolate Fl05. T-2 

concentrations were 1.9, 1.6, 0.9, 0.56, 0.35 and 0.22 

mg/kg in oat, barley, wheat, corn, sorghum and rice 

cultures, respectively, and HT-2 concentrations were 3.4, 

2.7, 2.1, 1.2, 0.9 and 0.62 mg/kg, respectively. 
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Although comparative studies about cereal 

susceptibility to T-2 and HT-2 production by F. 

langsethiae have not yet been reported, some studies have 

shown the effects of environmental conditions on the 

growth of F. langsethiae and T-2 and HT-2 production by 

strains of this species from England, Finland, Norway 

and Sweden on synthetic or semisynthetic media [20]-

[22]. In these studies, the optimal levels of aw and 

temperature for T-2 and HT-2 production by F. 

langsethiae strains, in general, agree with those obtained 

in the present study, regardless of the geographical origin 

of the strains. 

Another relevant aspect to highlight in the present 

study is that the levels of T-2 in the six cereal cultures 

were lower than those of HT-2, regardless of the cereal 

type and environmental conditions. In previous studies 

[18], [23], the interaction between fungicides, 

environmental conditions, growth, and T-2 and HT-2 

production in cultures of F. langsethiae in 3% milled oat 

media and in oat grains have been shown [18], [23]. In 

these reports it was demonstrated that there is a change in 

the T-2/HT-2 ratio depending on the substrates. 

In semisynthetic medium, T-2 levels were higher than 

those of HT-2 whereas in oat grains, the opposite was 

found. Studies on the metabolism of T-2 have suggested 

that in animals the liver is the major organ for this 

transformation in HT-2 [24], [25]. 

Hepatic carboxylesterases have been shown to be 

responsible for the deacetylation of T-2 giving HT-2 as 

the major metabolite. The ability of plant 

carboxylesterases to control secondary metabolites has 

been reviewed. 

In cereals, detailed studies have been carried out 

leading to the identification of esterases, which are active 

in pesticide metabolism [26]. 

Lattanzio, Solfrizzo, and Visconti [27] studied 

carboxylesterase activities in oats and other cereals. An 

enriched protein fraction with esterase activity toward T-

2 was used to increase the activity of the 

carboxylesterases naturally present in wheat and oats. 

These authors found that in maize, the initial T-2 content 

was completely converted into HT-2 after 90-min 

incubation. Lower conversion rates (89%, 42% and 35%) 

were observed in wheat, oats and barley, respectively, 

after 120 min. Although T-2 can be readily metabolised 

to HT-2, the Joint FAO/WHO Expert Committee on Food 

Additives (JECFA) has evaluated the safety of different 

mycotoxins in food and has concluded that the toxic 

effects of T-2 and its metabolite HT-2 could not be 

differentiated, and that research into the factors involved 

in the presence of T-2 and HT-2 in cereals and cereal 

products, in particular oats and oat products, is necessary 

and of a high priority. In the present study in cultures at 

0.98 and 0.95 aw the ANOVA shows that all factors and 

their interactions were significant to both T-2 and HT-2 

production. 

In summary, no previous studies have examined the 

impact that interacting environmental conditions and type 

of cereal have on T-2 and HT-2 production by F. 

langsethiae on cereals. Fusarium mycotoxins are 

produced within and on the grains and it is important to 

understand how pre- and post-harvest environmental 

conditions can affect mycotoxin contamination of cereal. 

In the present study, we have looked at conditions that 

can be interesting within guidelines on “Good Storage 

Practice” to minimize contamination of different cereals 

with T-2 and HT-2 toxins produced by F. langsethiae. 

The results have shown, for the first time, data on the 

impact of cereal type under the influence of interacting 

ecological factors on T-2 and HT-2 accumulation in oat, 

barley, wheat, corn, sorghum, and rice seeds. 

All factors appear to be very important in determining 

accumulation levels of these toxins in the cereal. In cereal 

technology, specially, in oats, barley and wheat, where 

the highest levels of toxins were found, a suitable control 

of aw (< 0.95 aw) and temperature (< 20 ºC) could prevent 

T-2 and HT-2 accumulation in cereal products ready for 

consumption. These measures are applicable to all stages 

of cereal technology. In pre-harvest, especially in humid 

areas or in unfavourable weather conditions, if necessary, 

approved and registered fungicides could be used as 

recommended by the manufacturers to control toxigenic 

Fusarium spp. In harvest and post-harvest, adequate 

temperature and aw control should be sufficient to prevent 

F. langsethiae growth and toxin production. 

New research is needed to control T-2 and HT-2 in 

cereal and derivatives food and feed. The Scientific Panel 

on Contaminants in the Food Chain (CONTAM panel) of 

the European Food Safety Authority (EFSA) [28] has 

indicated that “taking into account the conclusions of the 

scientific opinion, together with the large year to year 

variation in occurrence of T-2 and HT-2 toxin, it is 

appropriate to collect more data on T-2 and HT-2 in 

cereals and cereal products and more information on the 

effects of food processing (i.e. cooking) and agronomic 

factors on the presence of T-2 and HT-2 toxins. 

Furthermore, it is necessary to obtain more information 

on the different factors which lead to relative high levels 

of T-2 and HT-2 toxin in cereals and cereal products in 

order to be able to identify the measures to be taken to 

avoid or to reduce the presence of T-2 and HT-2 toxin in 

cereals and cereal products. Investigations have to be 

undertaken in order to collect information on the factors 

resulting in relative high levels of T-2 and HT-2 toxin in 

cereals and cereal products and on the effects of feed and 

food processing. Based on the available data, T-2 and 

HT-2 do not occur or only in very low levels in rice and 

rice products and therefore it is appropriate to exclude 

these products from the scope of this Recommendation”. 

In the present report rice was the cereal less vulnerable, 

as a substrate, to T-2 and HT-2 production by F. 

langsethiae. This finding shows that rice appears not to 

be a probable source of T-2 and HT-2 in the diet, which 

agrees with the Commission Recommendation. 
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