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Abstract—The conflicting reports on the performances of 

the online probes for super-saturation of sugar massecuite 

necessitate the application of soft-sensor to complement or 

replace them. Unfortunately, the available sugar 

crystallisation models which are theoretical and semi-

empirical in nature are not in the form which can be 

directly utilised as soft sensor for real time estimation of the 

massecuite super-saturation. Therefore, in this study, easy-

to-measure online variables that can be correlated with the 

super-saturation were identified and used to develop a 

regression model for online estimation of the super-

saturation value of sugar massecuite after seeding. The 

post-seeding regression model gave coefficient of 

determination and maximum relative error of 0.994 and 

4.7%, respectively. It is therefore concluded that the 

resulting model has the potential of being used for real time 

estimation of post-seeding super-saturation of sugar 

massecuite, as opposed to the existing complex fundamental 

and semi-empirical sugar crystallisation models.  

 

Index Terms—predictive model, super-saturation, post-

seeding, sugar crystallization 

 

I. INTRODUCTION 

Super-saturation is the main driving force of 

crystallisation; it increases the rate of diffusion of sucrose 

molecules to the crystal surface [1]. Increase in super-

saturation increases the rate of crystallisation; however, 

its effect on sugar crystal quality cannot be ignored. High 

super-saturation (labile zone) will result in poor crystal 

size distribution and will make centrifuging of the 

product difficult. Moreover, conglomerates (twin or 

multiple crystals) will be formed. This will have serious 

consequences, not only on the crystal size distribution, 

but the product colour because removal of the mother 

liquor during centrifuging from the multiple crystals is 

less than perfect [2]. The online probes currently in use 

for crystallisation control measure one or two parameters 

of the massecuite and not the super-saturation directly. At 

the moment, accuracy of these hardware sensors is an 

issue, as the variable to be measured is a multivariable 

function with many unknowns [1], [2]. Moreover, there 

are conflicting reports on their performances (see the 

results presented in [2]-[5]. Richardson and Co-workers 
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[6] recommended that when there is difficulty in the 

assessment of super-saturation when measuring a 

concentration-dependent property of the system, a 

component mass balance can be used to predict the 

super-saturation. This approach can be referred to as soft-

sensor, based on the definition given in [7]. However, the 

available sugar crystallisation models which are 

theoretical and semi-empirical in nature focused on 

different variables and not super-saturation. Moreover, 

they contain variables that are difficult to measure online 

they consist of several nonlinear algebraic-differential 

equations which must be solved numerically. Thus, these 

models are not in the form which can be directly utilised 

as soft sensor for real time estimation of massecuite 

super-saturation in the sugar crystallisation unit. Umo 

and Alabi [8] proposed a regression model for explicit 

prediction of super-saturation of massecuite as a function 

of variables that can be measured online. Unfortunately, 

this model is limited to pre-seeding situation, i.e. before 

the crystals formation begin. In this current study, easy-

to-measure online variables that can be correlated with 

the massecuite super-saturation after seeding were 

identified. Consequently, a regression model for 

predicting post-seeding super-saturation of massecuite as 

a function of the identified easy-to-measure online 

variables was developed. This model has the potential for 

online application, as opposed to the existing complex 

fundamental and semi-empirical models. The remaining 

sections of this paper are organised as follow: Section 2 

discusses the theories of modeling evaporative sugar 

crystallisation process; Section 3 presents the methods 

utilised in the data generation and post-seeding super-

saturation model development; Section 4 presents and 

discusses the obtained results while in Section 5, relevant 

conclusions based on the findings are drawn. 

II. THEORY OF MODELLING EVAPORATIVE SUGAR 

CRYSTALLISATION PROCESS 

Modelling of a crystallisation process is conceptually 

obtained by appropriate mass and energy balances 

together with a mathematical representation of the 

crystallisation rate. The rate of crystallisation can be 

computed through basic mass transfer considerations or 

by a population balance represented by its moment [9], 

[10]. The use of population balance to account for the 
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rate of crystallisation is common in models that involve 

the prediction of crystal size distribution [5], [9], [11]-

[13]. Although this makes the model very complex, it 

accounts for the initial experimental distributions and 

considers complex mechanisms such as those of size 

dispersion and/or particle agglomeration/aggregation [9]. 

To carry out material balance in an evaporative sugar 

crystalliser, the mass balance equations for water (Mw), 

impurities (Mi), dissolved sucrose (Ms) and crystals (Mc) 

are involved. Thus, the material balance consists of four 

set of algebraic-differential equations (see Refs. [9], [10], 

[13], [14]). In order to compute the rate of crystallisation 

(
𝑑𝑀𝑐

𝑑𝑡
)  for the material balance to be complete, the 

population balance is derived (see Refs. [9], [10], [13]-

[15]) and is given by the derivative of the first four 

moments 
𝑑𝜇0

𝑑𝑡
, 

𝑑𝜇1

𝑑𝑡
, 

𝑑𝜇2

𝑑𝑡
 and 

𝑑𝜇3

𝑑𝑡
. Petia and Co-workers [9] 

identified the zeroth and the first particles. They related 

the crystallisation rate to the derivative of the first 

moment as given by (1). 

 𝐽𝑐𝑟𝑖𝑠 = 𝜌𝑐
𝑑𝜇1

𝑑𝑡
                                (1) 

This derivation (1) given in [9], is not in agreement 

with normal physical meaning attached to moment 

equations, where the zeroth, first, second and third 

moments represent the total number, length, surface and 

mass of crystals per unit volume of suspension (see [5], 

[14], [15]). The mathematical representation for the 

physical meaning of these moments is provided in [15], 

as given in (2)-(5). 

 𝑁𝑐 = ∫ 𝑛(𝐿) 𝑑𝐿 = 𝜇0
∞

0
                        (2) 

 𝐿𝑐 = ∫ 𝐿 𝑛(𝐿) 𝑑𝐿 = 𝜇1
∞

0
                       (3) 

 𝐴𝑐 = 𝑘𝑎 ∫ 𝐿2 𝑛(𝐿) 𝑑𝐿 = 𝑘𝑎𝜇2
∞

0
                   (4) 

 𝑊𝑐 = 𝑘𝑣𝜌𝑐 ∫ 𝐿3 𝑛(𝐿) 𝑑𝐿 = 𝑘𝑣𝜌𝑐𝜇3
∞

0
               (5) 

where 𝑘𝑎  is the surface area shape factor and 𝑘𝑣  is the 

volume shape factor. 

The expression, given in (1), used by Petia and Co-

workers [9] for the rate of crystallisation, is justified 

since the volume growth rate 𝐺𝑣  was used in place of 

linear growth rate (G) of crystal; hence, the reason the 

𝜇2 (𝑚4)  and 𝜇3 (𝑚5)  have no physical meanings. By 

applying linear growth rate (G) in the population balance 

equations, the rate of crystallisation is given as a 

derivative of the third moment (6). 

 𝐽𝑐𝑟𝑖𝑠 = 𝜌𝑐
𝑑𝜇3

𝑑𝑡
                               (6) 

A mathematical representation of the crystallisation 

rate given in (7) was applied in Ref. [14]. Here, 𝑅𝐺 is the 

mass growth rate while 𝐴𝑇  is the total surface area of 

crystal.  

 
𝑑𝑀𝑐

𝑑𝑡
= 𝑅𝐺  𝐴𝑇                                (7) 

Growth rate is contained in (1), (6) and (7). In order to 

calculate growth rate, the value of super-saturation must 

be known. Cedric and Co-workers [10] proposed a 

mathematical representation for crystallisation rate that 

omit growth rate and does not involve the complexity of 

population balance. This representation is given by (8).  

 
𝑑𝑀𝑐

𝑑𝑡
= 𝑐𝑐(𝜌𝑓𝐹𝑓 − 𝐽𝑣𝑎𝑝) + 𝛼𝑐𝑟𝑖𝑠                 (8) 

Equation (8) is preferred in this current work since the 

aim is the prediction of super-saturation of massecuite 

and not the crystal size distribution. In addition, to 

account for the rate of evaporation in the material balance 

equation, energy balance must be carried out in the 

crystallisation unit. The energy balance in an evaporative 

crystallisation unit was presented in Refs. [10] and [14]. 

The challenge in implementing their models were the 

difficulties in determining the enthalpy terms and specific 

heat capacities derived as time dependent functions of 

physical and thermodynamic properties. The model, 

applied by Georgieva and Co-workers [12], Petia and Co-

workers [9] and Luis and Co-workers [13], as shown in 

(9) does not suffer from these challenges, as it 

incorporates the enthalpy terms and specific heat 

capacities. 

 
𝑑𝑇𝑚

𝑑𝑡
= 𝑎𝐽𝑐𝑟𝑖𝑠 + 𝑏𝐹𝑓 + 𝑐𝐽𝑣𝑎𝑝 + 𝑑                (9) 

III. METHODS 

A. Factorial Design of Experiment for Post-Seeding 

Super-Saturation Prediction 

The factors affecting the post-seeding super-saturation 

of massecuite during sugar crystallisation process were 

studied using factorial experimental design. Preliminary 

simulation experiments on sugar crystallisation process 

indicate that the most important factors for the online 

estimation of post seeding super-saturation  are feed flow 

rate (Ff), steam flow rate (Fs), pressure of vacuum (Pvac), 

initial super-saturation (S0) and the change in time (t). 

Hence, these factors were chosen as the independent 

variables while super-saturation (S) is the dependent 

(output) variable. Thirty two simulations, based on 2-

level full factorial experimental design, were carried out. 

The low and high values of the input factors used in the 

factorial experimental design are presented in Table I. 

TABLE I.  LOW AND HIGH VALUES OF THE INPUT FACTORS 

factor Name Low High 

𝑃𝑣𝑎𝑐 pressure of vacuum (kPa)  0.2 0.3 

𝐹𝑓 feed flow rate  (𝑚3 ℎ⁄ ) 0.0000 0.0275 

𝐹𝑠 steam flow rate (𝑚3 ℎ⁄ ) 1.1 2.1 

𝑆0 initial super-saturation value  1.02 1.25 

𝑡 Change in time (sec) 500 2000 

B. Numerical Solution of the Fundamental 

Crystallisation Model 

The model of the crystalliser which was obtained from 

Refs. [10], [12]-[14] and [16] involves appropriate mass 

balance, energy and population balances/mathematical 

representation of the crystallisation rate. The 

mathematical representation of crystallisation rate 

utilised in this study is that which was applied by Cedric 

and Co-workers [10] to an industrial scale fed-batch 

evaporative ‘C’ sugar crystallisation process; this is given 

in (13). The mass balance equations for water (Mw), 

impurities (Mi), dissolved sucrose (Ms), and crystals (Mc) 
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in an evaporative sugar crystallisation unit consist of the 

following set of algebraic-differential equations. 

𝑑𝑀𝑤

𝑑𝑡
= 𝐹𝑓𝜌𝑓(1 − 𝐵𝑓) + 𝐹𝑤𝜌𝑤 − 𝐽𝑣𝑎𝑝           (10) 

 
𝑑𝑀𝑖

𝑑𝑡
= 𝐹𝑓𝜌𝑓𝐵𝑓(1 − 𝑃𝑢𝑟𝑓)                    (11) 

 
𝑑𝑀𝑠

𝑑𝑡
= 𝐹𝑓𝜌𝑓𝐵𝑓𝑃𝑢𝑟𝑓 −

𝑑𝑀𝑐

𝑑𝑡
                     (12) 

 
𝑑𝑀𝑐

𝑑𝑡
= 𝑐𝑐(𝜌𝑓𝐹𝑓 − 𝐽𝑣𝑎𝑝) + 𝛼𝑐𝑟𝑖𝑠                 (13) 

The energy balance in an evaporative crystallisation 

unit is given in (14). 

 
𝑑𝑇𝑚

𝑑𝑡
= 𝑎𝐽𝑐𝑟𝑖𝑠 + 𝑏𝐹𝑓 + 𝑐𝐽𝑣𝑎𝑝 + 𝑑               (14) 

where parameters a, b, c and d incorporate the enthalpy 

terms and specific heat capacities derived as time 

dependent functions of physical and thermodynamic 

properties as given in (15), (16)-(18) where W and Q are 

the stirrer power and heat input, respectively. 

𝑎 =
1

𝑀𝑠𝑜𝑙𝐶𝑝𝑠𝑜𝑙+𝑀𝑐𝐶𝑝𝑐
[𝐻𝑠𝑜𝑙 − 𝐻𝑐 + 𝑀𝑐+(1 −

𝐵𝑠𝑜𝑙)
𝑑𝐻𝑠𝑜𝑙

𝑑𝐵𝑠𝑜𝑙
+

1−𝑃𝑢𝑟𝑠𝑜𝑙

𝐵𝑠𝑜𝑙

𝑑𝐻𝑠𝑜𝑙

𝑑𝑃𝑢𝑟𝑠𝑜𝑙
]                  (15) 

 𝑏 =
𝜌𝑓

𝑀𝑠𝑜𝑙𝐶𝑝𝑠𝑜𝑙+𝑀𝑐𝐶𝑝𝑐
[𝐻𝑓 − 𝐻𝑠𝑜𝑙 + (𝐵𝑓 − 𝐵𝑠𝑜𝑙)

𝑑𝐻𝑠𝑜𝑙

𝑑𝐵𝑠𝑜𝑙
+

𝐵𝑓

𝐵𝑠𝑜𝑙
(𝑃𝑢𝑟𝑓 − 𝑃𝑢𝑟𝑠𝑜𝑙)

𝑑𝐻𝑠𝑜𝑙

𝑑𝑃𝑢𝑟𝑠𝑜𝑙
]                 (16) 

 𝑐 =
1

𝑀𝑠𝑜𝑙𝐶𝑝𝑠𝑜𝑙+𝑀𝑐𝐶𝑝𝑐
[𝐻𝑓 − 𝐻𝑣𝑎𝑝 − 𝐵𝑠𝑜𝑙

𝑑𝐻𝑠𝑜𝑙

𝑑𝐵𝑠𝑜𝑙
]      (17) 

 𝑑 =
1

𝑀𝑠𝑜𝑙𝐶𝑝𝑠𝑜𝑙+𝑀𝑐𝐶𝑝𝑐
[𝑊 + 𝑄 + 𝐹𝑤𝜌𝑤(𝐻𝑤 − 𝐻𝑠𝑜𝑙 +

𝐵𝑠𝑜𝑙)
𝑑𝐻𝑠𝑜𝑙

𝑑𝐵𝑠𝑜𝑙
]                                                  (18) 

 𝑄 =∝𝑠 𝐹𝑠∆𝐻𝑠                             (19) 

The rate of evaporation is given in (20). The 

correlations for physical properties used in the model are 

adapted from [12] and [13]. 

 𝐽𝑣𝑎𝑝 =
𝑊+𝑄

𝜆𝑤(𝑣𝑎𝑐)
+ 𝐾𝑣𝑎𝑝(𝑇𝑚 − 𝑇𝑤(𝑣𝑎𝑐) + 𝐵𝑃𝐸)     (20) 

Based on the solution of the mass and energy balance 

(10)-(20), the super-saturation level of the massecuite is 

obtained using (21). 

𝑆 =
(

𝐵𝑥𝑠𝑜𝑙
100−𝐵𝑥𝑠𝑜𝑙

)

(
𝐵𝑥𝑠𝑎𝑡

100−𝐵𝑥𝑠𝑎𝑡
)×𝐶𝑠𝑎𝑡

                          (21) 

The correlations for physical properties used in (21) 

are given in (22)-(25). All other correlations for physical 

properties used in the evaporative sugar model are 

adapted from [12] and [13]. 

𝐵𝑥𝑠𝑜𝑙 =
𝑀𝑠+𝑀𝑖

𝑀𝑠𝑜𝑙
                             (22) 

 𝐵𝑥𝑠𝑎𝑡 = 64.447 + 8.22 × 10−2𝑇𝑚 + 1.66169 ×

10−3𝑇𝑚
2 − 1.558 × 10−6𝑇𝑚

3 − 4.63 × 10−8𝑇𝑚
4          (23) 

𝐶𝑠𝑎𝑡 = 0.1
𝐵𝑥𝑠𝑜𝑙

100 − 𝐵𝑥𝑠𝑜𝑙

(1 − 𝑃𝑢𝑟𝑠𝑜𝑙) + 0.4 

+0.6𝑒𝑥𝑝 (−0.24
𝐵𝑥𝑠𝑜𝑙

100−𝐵𝑥𝑠𝑜𝑙
(1 − 𝑃𝑢𝑟𝑠𝑜𝑙))   (24) 

 𝑃𝑢𝑟𝑠𝑜𝑙 =
𝑀𝑠

𝑀𝑠+𝑀𝑖
                            (25) 

TABLE II.  INITIAL INPUT PARAMETERS FOR SIMULATION OF POST-
SEEDING SUPER-SATURATION OF SUGAR MASSECUITE 

Input variables Value  

Kvap (kg/s.℃) 0.03 

W (J/s) 15000 

∝s 0.0076 

𝑭𝒔 (kg/s) 2 

Ps (bar) 2 

Ts (℃)) 150 

Pvac (bar) 0.3 
Ff (m

3/s) 0.0001 

𝝆𝒇 (kg/m3) 1356.235 

𝝆𝒄 (kg/m3) 1580 

𝑩𝒇  0.72 

𝑴𝒄 (kg) 5000 

Fw(m3/s) 0 

𝝆𝒘 (kg/m3) 1000 

Purf 0.9 

𝑻𝒇 (℃) 70 

𝑻𝒘 (℃) 70 

R 8.314 

∝cryst 0.9217 

𝑺𝟎  1.25 

 

Although the above equations are elegant, they are 

bulky and cannot be directly utilised as soft sensor for 

online estimation of super-saturation of the sugar 

massecuite. The novelty in this work involves the 

conversion of these hitherto complex models to a single 

simple model that has the potentials of being used for 

real time estimation of the massecuite super-saturation. 

To achieve this, first, these algebraic-differential 

equations are solved numerically over the practical 

ranges of operating conditions (see Table I and Table II) 

of sugar evaporative crystalliser. The numerical solution 

was carried out using explicit Euler method in Microsoft 

Excel spreadsheet. Second, a portion of the data 

(numerical solutions) obtained was used to estimate the 

parameters: 𝑏0, 𝑏1, 𝑏2 … . . 𝑏5 and 𝑏12, 𝑏13 … . . 𝑏12345 of the 

proposed regression model given in (26) using Minitab 

14 statistical software. 

 𝑌 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 + 𝑏5𝑥5 +
𝑏12𝑥1𝑥2 + 𝑏13𝑥1𝑥3 + 𝑏14𝑥1𝑥4 + ⋯          (26) 

where Y is the predicted response variable (post-seeding 

super-saturation of massecuite); 𝑥1, 𝑥2,  𝑥3,  𝑥4 𝑎𝑛𝑑 𝑥5 

are the independent variables (feed flow rate, steam flow 

rate, pressure of vacuum, initial super-saturation and the 

change in time, respectively);  𝑏0  is the offset term 

(intercept); 𝑏1,  𝑏2 … . . 𝑏5  are the linear effects while 

𝑏12,  𝑏13 … . 𝑏12345  are the interaction effects. The 

operating conditions used in the simulations are based on 

the average of the available industrial conditions and 

input constraints as reported in Refs. [1], [10], [13], [16] 

and [17]. The initial input parameters used in the 

simulation are as shown in Table II.  

IV. RESULTS AND DISCUSSION 

Following the steps outlined in Section (3), a 

regression model (given in (27) for predicting the post-

seeding super-saturation of massecuite was obtained. The 
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dependent variable (super-saturation (S)) was obtained as 

the sum of the contributions of the independent variables 

( 𝑃𝑣𝑎𝑐 , 𝐹𝑓 ,  𝐹𝑠 ,  𝑆0 ,  𝑡 ) and the interaction terms in the 

regression model, as given by (27). The Pareto chart Fig. 

1 shows each of the estimated effects and interactions of 

each of the effects. Thus, interaction effect that has no 

statistical significance as shown in the Pareto chart are 

not included in (27). 

𝑆 = 0.349080 − 2.12210𝑃𝑣𝑎𝑐 − 2.85042𝐹𝑓 + 0.166238𝐹𝑠 + 1.23607𝑆0 − 6.45838𝐸 − 05𝑡 + 33.2521𝑃𝑣𝑎𝑐𝐹𝑓 −

2.72190𝐹𝑓𝐹𝑠 − 10.2033𝐹𝑓𝑆0 + 0.00873790𝐹𝑓𝑡 − 0.0106366𝐹𝑓𝑆0𝑡                            (27) 

 

Figure 1.  Pareto chart of the effect of input factors on post-seeding 
super-saturation of masecuite 

TABLE III.  ANALYSIS OF VARIANCE FOR POST-SEEDING SUPER-
SATURATION REGRESSION MODEL 

Source DF Seq SS Adj SS Adj MS F P 

Main 

Effects 
5 2.22371 2.22371 0.444741 607.91 0 

2-Way 

Interactions 
4 0.10995 0.10995 0.027489 37.57 0 

3-Way 
Interactions 

1 0.00583 0.00583 0.005826 7.96 0.01 

R2 = 99.35% 

Max. %relative error=4.67 

 

The regression analysis gives the value of the 

determination coefficient, R
2
 as 99.35% which indicate 

that only 0.65% of the total variations are not explained 

by the model. Moreover, the model predictions have a 

maximum relative error of 4.7% which is deemed 

accurate enough for practical applications. In addition, 

analysis of variance (ANOVA) of the regression model 

for post-seeding super-saturation demonstrates that the 

model is significant as reflected in the very low p-value 

in the main effect (see Table III).  

V. CONCLUSION 

The existing complex theoretical and semi-empirical 

sugar crystallisation models are not in the form which 

can be utilised as soft sensors for real time estimation of 

post-seeding super-saturation of sugar massecuite. In this 

study, feed flow rate, steam flow rate, pressure of 

vacuum, initial super-saturation and change in time were 

identified as easy-to-measure online variables that can be 

correlated with the super-saturation of sugar massecuite. 

Consequently, a regression model for predicting post-

seeding super-saturation of sugar massecuite as a 

function of the identified easy-to-measure online 

variables was developed. The evaluation of the predictive 

ability of the model was found to be satisfactory, as it 

gave the coefficient of determination ( 𝑅2 ) and the 

maximum relative error of 0.994 and 4.7%, respectively. 

It is therefore concluded that the resulting model has the 

potential of being used for real time estimation of post-

seeding super-saturation of sugar massecuite, as opposed 

to the existing complex fundamental and semi-empirical 

sugar crystallisation models. 
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