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Abstract—Given the successful application of spectroscopic 

methods in the field of coffee analysis as fast and reliable 

routine techniques, the objective of this work was to 

evaluate the feasibility of employing Diffuse Reflectance 

Infrared Fourier Transform Spectroscopy (DRIFTS) for 

discrimination between roasted coffees that presented 

distinct sensory characteristics and were submitted to a 

range of roasting conditions. Samples consisted of coffees 

obtained from Nespresso type capsules of intensity levels 

ranging from 2 to 12. Principal Component Analysis (PCA) 

of the processed spectra provided separation of the samples 

into three groups: low (positive PC1), medium (scattered) 

and high (negative PC1) intensity. Group separation was 

related to both roasting intensity and sensory parameters, 

with a clear separation between samples described as low 

roasted with fruity and floral flavors in comparison to 

samples described as being intense and very roasted. PLS-

DA models were constructed and provided satisfactory 

discrimination according to sensory characteristics. Samples 

were classified according to flavor as sugar browning, 

enzymatic, or dry distillation. Such results confirm the 

potential of DRIFTS in the discrimination and classification 

of roasted and ground coffees. 
 

Index Terms—chemometrics, coffee, DRIFTS, FTIR, 

spectroscopic methods 

 

I. INTRODUCTION 

Over the last decades, the need for new and rapid 

analytical methods in the field of food analysis has 

prompted extensive research on spectroscopic methods, 

including Near Infrared Spectroscopy (NIRS) and Fourier 

Transform Infrared (FTIR) spectroscopy [1], [2]. Recent 

applications of such methods to coffee quality analysis 

include discrimination between Arabica and Robusta 

species [3], discrimination between defective and non-

defective beans [4], [5] and discrimination between pure 

and adulterated coffee samples [6]-[9]. 

Spectroscopic methods are usually based on 

transmittance or reflectance readings, with reflectance-

based methods being more commonly employed as 

routine methodologies for food analysis, since they 

require none or very little sample pre-treatment [10]. 
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FTIR reflectance methods can be divided into Attenuated 

Total Reflectance Fourier Transform Infrared 

Spectroscopy (ATR-FTIR) and Diffuse Reflectance 

Fourier Transform Infrared Spectroscopy (DRIFTS). 

ATR collects information from the sample surface while 

DRIFTS provides information from the entire sample, 

being a combination of internal and external reflection 

[10]. Our previous studies have shown the feasibility of 

employing DRIFTS for detection of defective (low 

quality) coffee beans in admixtures with non-defective 

(high quality) ones [11] and also for detection and 

quantification of multiple adulterants in roasted and 

ground coffee [7]-[9]. In this study we extend our 

research by further evaluating the potential of this 

technique for discrimination between roasted coffees that 

presented distinct sensory characteristics under distinct 

roasting conditions. 

II. MATERIALS AND METHODS 

A. Materials 

Samples consisted of ground and roasted coffees 

obtained from Nespresso type capsules of different 

brands and origins, with varying intensity levels and 

sensory characteristics, as specified in Table I. 

B. Color Evaluation 

All samples were further ground (0.15<D<0.5mm) and 

submitted to color evaluation. Color measurements were 

performed using a tristimulus colorimeter (HunterLab 

Colorflex 45/0 Spectrophotometer, Hunter Laboratories, 

VA, USA) with standard illumination D65 and 

colorimetric normal observer angle of 10°. Measurements 

were based on the CIE L
*
a

*
b

*
 three dimensional cartesian 

(xyz) color space represented by: Luminosity (L
*
), 

ranging from 0 (black) to 100 (white) - z axis; parameter 

a
*
, representing the green-red color component - x axis; 

and parameter b
*
, representing the blue-yellow 

component - y axis. Discussion of color results will only 

take into account the luminosity parameter, given that 

previous studies on coffee analysis have established that 

this is the most relevant parameter for color evaluation 

[9], [12]. 
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TABLE I.  CLASSIFICATION OF COFFEE SAMPLES ACCORDING TO 

INTENSITY, SPECIES, AND SENSORY ATTRIBUTES SPECIFIED BY THE 

MANUFACTURERS 

Sample Intensity Species Sensory characteristics 

Brand 1 

S1 9 Arabica Cocoa, intense 

S2* 9 Arabica Cocoa, intense 

S3 3 Arabica Floral, intense 

S4 5 Arabica, Robusta Cereals, balanced 

S5 3 Arabica Fruity, citric 

S6* 2 INP INP 

S7* 7 Arabica, Robusta 
Cereals, roasted cocoa, 

high intensity 

S8* 3 INP INP 

S9 11 Arabica 
Intense, bitter cocoa 

notes 

S10 4 Arabica Sweet, cereals, balanced 

S11 8 Arabica 
Sweet cereal, roasted 

intense 

S12 10 Arabica, Robusta Spicy, intense 

S13 12 Arabica, Robusta Woody, intense, spicy 

S14 4 Arabica Malted cereal, balanced 

S15 6 Arabica 
Caramel aromas, 

balanced 

S16 10 Arabica, Robusta 
Soft, fruity, dark roast, 

intense 

S17 8 Arabica, Robusta Woody, intense 

S18 6 Arabica Fruity 

S19 4 Arabica Floral, fruity 

S20* 4 Arabica Floral, fruity 

S21 4 Arabica Fruity cereal, balanced 

S22* 4 Arabica Fruity cereal, balanced 

Brand 2 

S23 INP Arabica 
Sweet and velvety coffee 
with balanced acidity and 

chocolate aromas 

S24 INP Arabica 
Fragrant aroma and 

balanced flavor 

Brand 3 

S25 4 Arabica Soft and elegant aroma 

S26 5 Arabica 

Balanced and aromatic 

blend of beans from the 
highlands 

S27 10 Arabica 
Delicate aromas of 

roasting 

S28 5 Arabica Walnuts 

S29 9 Arabica 
Cocoa aroma and Strong 

body flavor 

S30 4 Arabica 
Fruity notes and 

balanced acidity 

Brand 4 

S31 INP Arabica Citric notes 

S32 INP Arabica 
Fruity aroma and mild 

acidity 

S33 INP Arabica 
Caramelized and fruity 

notes, well balanced 

coffee 

Brand 5 

S34 10 Arabica 
Dark chocolate notes and 

toasted hazelnuts 

S35 7 Arabica Nuts, citric 

*Decaffeinated coffee. 
INP: Information not provided. 

C. FTIR Analysis 

A Shimadzu IRAffinity-1 FTIR Spectrophotometer 

(Shimadzu, Japan) with a DLATGS (Deuterated 

Triglycine Sulfate Doped with L-Alanine) detector was 

used in the measurements that were all performed in a dry 

atmosphere at room temperature (20±0.5°C). Diffuse 

Reflectance (DR) measurements were performed with a 

Shimadzu sampling accessory (DRS8000A). Each sample 

was mixed with KBr and 23mg of this mixture were 

placed inside the sample port. Pure KBr was employed as 

reference material (background spectrum). All spectra 

were recorded within a range of 4000-600cm
−1

 with a 

4cm
−1

 resolution and 20 scans. 

 

Figure 1.  SCAA flavor wheel for sensory classification of roasted 
coffees (SCAA, 2015). 

TABLE II.  CLASSIFICATION OF COFFEE SAMPLES ACCORDING TO 

INTENSITY, SPECIES, AND SENSORY ATTRIBUTES SPECIFIED BY THE 

MANUFACTURERS 

Class Sensory characteristics Samples 

Sugar 

Browning 

Cocoa, cereals, roasted cocoa, 
bitter cocoa, sweet, cereals malted 

cereal, caramel aromas, dark roast, 

chocolate aromas, walnuts, aromas 
of roasting, cocoa aroma, strong 

body flavor, caramelized notes, 

dark chocolate notes, toasted 
hazelnuts 

S1, S2*, S4, 
S7*, S9, S10, 

S11, S14, S15, 

S27, S28, S29, 
S34 

Enzymatic 
Floral, fruity, citric, acidity, mild 
acidity, fruity aroma, fruity notes 

S3, S5, S18, 

S19, S20*, 
S24, S30, S31, 

S32 

Dry 

Distillation 
Woody, spicy S13, S17 

Uncategorized 

Soft and elegant aroma, balanced 

and aromatic blend of beans from 
the highlands; delicate aromas of 

roasting 

S25, S26, S27 
 

Combination 

of attributes 

Sweet, cereals, balanced; soft, 
fruity, dark roast, intense; sweet 

and velvety coffee with balanced 

acidity and chocolate aromas; 
caramelized and fruity notes, well 

balanced coffee; nuts, citric 

S16, S21, 

S22*, S23, 

S33, S35 
 

*Decaffeinated coffee. 

D. Data Processing and Statistical Analysis 

In order to reduce the effect of noise, remove 

redundant information and enhance sample-to-sample 

International Journal of Food Engineering Vol. 2, No. 1, June 2016

©2016 International Journal of Food Engineering 2



differences, the following data pre-processing 

(pretreatment) techniques were applied to the obtained 

spectra: mean centering, Generalized Least Squares 

Weighting (GLSW), for PCA analysis, and Orthogonal 

Signal Correction (OSC), for PLS-DA analysis. Samples 

were classified as: low (intensity≤4), medium 

(5≤intensity≤8) or high (intensity≥9) intensity. SCAA 

(Specialty Coffee Association of America) classification 

was employed for separation of the samples into groups 

according to sensory attributes as shown in Fig. 1 [13]. 

Samples were classified into major groups as shown in 

Table II. The statistical packages MATLAB 7.13 (The 

MathWorks, Natick, Massachusetts, EUA) and PLS 

Toolbox (Eigenvector Technologies, Manson, 

Washington) were employed for the chemometric 

calculations. 

III. RESULTS AND DISCUSSION 

Color measurements results (average luminosity values) 

are displayed in Table III. It can be noticed that, in 

general, the samples classified with higher intensity 

presented the lowest luminosity value whereas the low 

intensity samples presented the highest luminosity values. 

Such results indicate that intensity is probably related to 

roasting degree, although roasting conditions were not 

specified by the manufacturers. However, variance 

analysis results (One-way ANOVA) indicated that there 

was no significant difference among samples (see Table 

IV). Therefore, luminosity is not an isolated factor and 

cannot be directly correlated to intensity values. Such 

results are in agreement with the data from Dmowski and 

Dabrowska [14], who reported that there was not a strong 

correlation between luminosity and roasting intensity. 

TABLE III.  AVERAGE LUMINOSITY VALUES 

Intensity 

Classes 

Intensity 

value 

Luminosity (L*) 

Standard 

deviation 

High 

Intensity 
9 a 12 19.28 ± 1.64 

Medium 
Intensity 

5 a 8 19.64 ± 2.0 

Low 

Intensity 
2 a 4 20.68 ± 2.8 

TABLE IV.  ONE-WAY ANALYSIS OF VARIANCE FOR LUMINOSITY 

VALUES 

Source 
Sum of 

squares 

Degrees of 

freedom 

Mean 

squares 
F 

Between 

groups of 
intensity 

25.29415335 2 12.64707668 2.251376729 

Inside 

groups of 
intensity 

179.7595438 32 5.617485743  

Total 205.0536971 34   

F value=3.2945; p-value=0.12; α=0.05 

 

Figure 2.  Diffuse reflectance spectra obtained for roasted coffees from espresso capsules. 

Typical average spectra obtained for the evaluated 

samples are shown in Fig. 2. The large band at 3700-

3000cm
-1 

(band 1) is attributed to O-H stretching and it is 

usually associated to residual moisture in the samples 

[15]. Bands 2 and 3 have been previously identified in 

spectra of roasted and crude coffee samples and also in 

spectra of caffeinated beverages [7], [16]. They can be 

partly assigned to unsaturated and saturated lipids present 

in coffee. Band 3 has also been attributed to stretching of 

C-H bonds of methyl (–CH3) group in the caffeine 

molecule and employed in predictive models for 

quantitative analysis of caffeine [16]. Band 4 is attributed 

to C=O stretching in lipids [15]. Absorption in region 5 

can be associated to several substances that are 

commonly found in roasted coffee, including caffeine, 

trigonelline and pyridines. Band 6 is attributed to C-H 

vibrations from glicerol. Region 7 is called “fingerprint 

region” and is characterized by vibrations of several types 

of bonds, including C-H, C-O and C-N, in association to 

carbohydrates [17]. The several bands in region 8 can be 

attributed to β-glycosidic links from coffee carbohydrates 

(e.g., arabinogalactans, galactomannans and cellulose) 

and also chlorogenic acids. 

Using the DR spectra as chemical descriptors, 

Principal Component Analysis (PCA) was applied in 

order to establish whether samples could be separated. 
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Data matrices were constructed so that each row 

corresponded to a sample and each column represented 

the spectra datum at a given wavenumber, after 

processing as previously described. Results are displayed 

in Fig. 3. The first component accounted for 11% of the 

total sample variance. It can be seen that the high 

intensity samples (negative PC1) are well separated from 

the low intensity ones (positive PC1). An analysis of the 

loadings plots (Fig. 4) associates positive PC1 with 

carbohydrates, chlorogenic and carboxilic acids (1700, 

1574 and 1073cm
-1

) and negative PC1 with caffeine, 

lipids and carbohydrates (2920, 1740 and 791cm
-1

). 

Results indicate that not only roasting intensity but also 

flavor components might be affecting sample grouping. 

 

Figure 3.  PCA score plots (PC1 vs. PC2) of the spectra submitted to 

mean centering and GLSW. 

 

Figure 4.  PC1 loading plot of the spectra submitted to mean centering and GLSW. 

Results from PCA analysis of decaffeinated vs. regular 

samples are shown in Fig. 5. The first component 

accounted for 15.5% of the total sample variance. A clear 

separation between decaffeinated (negative PC1) and 

regular (positive PC1) samples can be seen. An analysis 

of the loadings plots (not shown) associates positive PC1 

with the bands at 1699 and 1653cm
-1

, characteristic of 

caffeine as well as trigonelline. 

 
Figure 5.  PCA score plots (PC1 vs. PC2) of the spectra submitted to 

mean centering and GLSW. 

PLS-DA models were constructed by using the data 

obtained the regular coffee samples, i.e., decaffeinated 

samples were excluded. The calibration and validation 

sets consisted of a total of 103 and 43 samples, 

respectively. The best discrimination model was 

constructed with 17 latent variables, and accounted for 

99.8% and 62.7% of the variance in X (spectral data) and 

Y (sensory classification), respectively. The sensitivity 

(percent of true positives) and specificity (percentage of 

true negatives) parameters are shown in Table V. 

Sensitivity and specificity values obtained for both 

calibration and validation samples are high, confirming 

the accuracy of the developed models. 

TABLE V.  SENSITIVITY AND SPECIFICITY VALUES FOR THE TRAINING 

(CALIBRATION) AND TESTING (VALIDATION) SETS 

 

Sugar 

Browning 
Enzymatic

 

Dry 

Distillation 

Combination 

of attributes 

Calibration 

Set 
    

Sensitivity 0.87 0.825 1 1 

Specificity 0.897 0.865 0.980 1 

Validation 

Set 
    

Sensitivity 0.826 0.700 0.750 1 

Specificity 0.838 0.730 0.75 0.943 

Cross 

Validation 

Classification 

Error 

0.17 0.28 0.15 0.02 
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Predicted Y values for the “Sugar Browing” model are 

shown in Fig. 6(a) and the corresponding variable 

importance in projection (VIP) scores are shown in Fig. 

6(b). VIP scores estimate the importance of each variable 

in the projection used in a PLS-DA model and are 

commonly used for variable selection. Variables with a 

large VIP score can be considered important in given 

model, whereas variables presenting VIP scores 

significantly smaller than 1 (one) are less important and 

might be good candidates for exclusion from the model. 

The most important bands (variables) for discrimination 

of coffees within this sensory class were 1778, 1690, 

1570, 1508 and 804 cm
-1

 and can be associated to lipids, 

caffeine, trigonelline and carbohydrates. 

 
(a) 

 
(b) 

Figure 6.  “Sugar Browning” PLSDA model of the spectra submitted to mean centering and OSC: (a) predicted Y values and (b) VIP scores.  

Aroma groups such as almonds, nuts, cocoa and 

sweetness are consistent in lighter and medium roasts 

[18]. The coffee tasters notice these descriptors, 

especially chocolate, when the beans are subjected to 

medium-dark roasts. An additional minute at the grain 

heating phase during roasting can contribute to increased 

sweetness and a greater concentration of aldehydes and 

acids that are related to chocolate and nut flavorings [19]. 

Carbohydrates have a significant impact on the 

sweetness of the beverage and the caramel notes from the 

Maillard reactions occurring between sugars and amino 

acids during roasting. The lipid fraction retains important 

volatile flavor compounds as well as contributes to its 

tactility, commonly known as the “body” of the drink 

[20]. The trigonelline molecules are responsible for the 

organoleptic characteristics of the beverage and are 

related to roasted coffee aroma [21]-[22]. Thus, the 

molecules that contribute to the classification of the 

model samples are directly related to the aromatic 

compounds of the caramelization of the sugars. Almond 

aromas are more noticeable in lighter roasts and cocoa 

aromas in medium roasts [18]. 

Predicted Y values for the “Enzimatic” model are 

shown in Fig. 7(a) and the corresponding VIP scores are 

shown in Fig. 7(b). The most important bands that 

provided discrimination of this specific class were 2922, 

2851, 1780, 1742, 1570, 775 and 772cm
-1

. These regions 

are related to lipids, caffeine, carbonyl, aliphatic acids 

and esters, trigonelline and carbohydrates. Floral, fruity, 

herbal and citrus aromas are typically assigned to this 

sensory class. Floral aromas are commonly exhibited by 

esters and acids, depending on the type and concentration 

of carbonyl in the roasted coffee, which significantly 

contributes to the flavor [19]. Trigonelline may have 

contributed to the separation of samples for this class 

along with the lipid fraction [20] as discussed earlier. 
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(a) 

 
(b) 

Figure 7.  “Enzymatic” PLSDA model of the spectra submitted to mean centering and OSC: (a) predicted Y values and (b) VIP scores.  

 
(a) 

 
(b) 

Figure 8.  “Dry Distillation” PLSDA model of the spectra submitted to mean centering and OSC: (a) predicted Y values and (b) VIP scores. 
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Results regarding the “Dry Distillation” model are 

shown in Fig. 8. The VIP score data indicate that the 

regions and bands that contributed the most for 

discrimination of these samples were: 3550-3400, 2922, 

2851, 1778-1741, 1570 and 775-773cm
-1

. These can be 

associated to the presence of lipids, caffeine, carbonyl, 

aliphatic acids, and carbohydrates. The set of attributes 

that characterize this sensory class are related to 

pungency, and woody, charred and spicy aromas. 

According the literature, aliphatic acids are correlated to 

wood and cucumber aromas [19]. The lipids may have 

contributed by retaining important volatile compounds, as 

previously described. The carbohydrates are assigned as 

responsible for sweetness and production of other 

aromatic compounds by the Maillard reaction [20]. Many 

sensory attributes related to “Dry Distillation”, such as 

smokey, burnt and pungent, are perceived more intensely 

with increased degree of roasting [18]. 

IV. CONCLUSIONS 

Diffuse Reflectance Infrared Fourier Transform 

Spectroscopy together with chemometric techniques was 

successfully employed for discrimination between roasted 

coffees that presented distinct sensory characteristics. 

PCA analysis provided separation according to roasting 

intensity and also between regular and decaffeinated 

samples. Separation was affected by roasting intensity 

and sensory parameters, with a clear separation between 

samples described as low roasted with fruity and floral 

flavors in comparison to samples described as being very 

intense and very roasted. PLS-DA models were 

constructed and provided satisfactory discrimination 

according to sensory characteristics. SCAA based 

classification provided separation of the samples mainly 

as “Sugar browning”, “Enzymatic” or “Dry distillation. 

Classes of compounds such as carbohydrates, lipids, acids, 

and esters, that can be correlated with distinct aroma 

groups, were responsible for the discrimination of 

samples. However, given the complex nature of the 

aroma of roasted coffee, it was not possible to assign a 

specific class of compounds to an exclusive sample group. 

Both lipids and carbohydrates affected all sample groups. 

Lipid contribution is attributed to their ability to retain 

volatiles whereas carbohydrates are precursors of a wide 

variety of aromatic compounds produced during roasting 

as a result of Maillard reactions. Nonetheless, regardless 

of the complexity of the aromatic profile of the coffee 

samples, all developed models presented high values of 

sensitivity and specificity, confirming the potential of 

DRIFTS in the discrimination of roasted coffees 

according to sensory profiles. 
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